Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular Mechanisms Controlling Phosphate-Induced Downregulation of the Yeast Pho84 Phosphate Transporter

Authors: Dieter R. Samyn; Bengt L. Persson; Fredrik Lundh; Kent Stadler; Yulia Popova; Jean-Marie Mouillon; Johan M. Thevelein; +1 Authors

Molecular Mechanisms Controlling Phosphate-Induced Downregulation of the Yeast Pho84 Phosphate Transporter

Abstract

In Saccharomyces cerevisiae, phosphate uptake is mainly dependent on the proton-coupled Pho84 permease under phosphate-limited growth conditions. Phosphate addition causes Pho84-mediated activation of the protein kinase A (PKA) pathway as well as rapid internalization and vacuolar breakdown of Pho84. We show that Pho84 undergoes phosphate-induced phosphorylation and subsequent ubiquitination on amino acids located in the large middle intracellular loop prior to endocytosis. The attachment of ubiquitin is dependent on the ubiquitin conjugating enzymes Ubc2 and Ubc4. In addition, we show that the Pho84 endocytotic process is delayed in strains with reduced PKA activity. Our results suggest that Pho84-mediated activation of the PKA pathway is responsible for its own downregulation by phosphorylation, ubiquination, internalization, and vacuolar breakdown.

Keywords

Feedback, Physiological, Saccharomyces cerevisiae Proteins, Ubiquitin, Intracellular Space, Down-Regulation, Saccharomyces cerevisiae, Cyclic AMP-Dependent Protein Kinases, Phosphates, Up-Regulation, Protein Transport, Proton-Phosphate Symporters, Phosphorylation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?