Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Molecular Genetics
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of ZNF313 / RNF114 as a novel psoriasis susceptibility gene

Authors: Capon, F; Bijlmakers, M J; Wolf, N; Quaranta, M; Huffmeier, U; Allen, M; Timms, K; +14 Authors

Identification of ZNF313 / RNF114 as a novel psoriasis susceptibility gene

Abstract

Psoriasis is an immune-mediated skin disorder that is inherited as a multifactorial trait. Linkage studies have clearly identified a primary disease susceptibility locus lying within the major histocompatibility complex (MHC), but have generated conflicting results for other genomic regions. To overcome this difficulty, we have carried out a genome-wide association scan, where we analyzed more than 408,000 SNPs in an initial sample of 318 cases and 288 controls. Outside of the MHC, we observed a single cluster of disease-associated markers, spanning 47 kb on chromosome 20q13. The analysis of two replication data sets confirmed this association, with SNP rs495337 yielding a combined P-value of 1.4 x 10(-8) in an overall sample of 2679 cases and 2215 controls. Rs495337 maps to the SPATA2 transcript and is in absolute linkage disequilibrium with five SNPs lying in the adjacent ZNF313 gene (also known as RNF114). Real-time PCR experiments showed that, unlike SPATA2, ZNF313 is abundantly expressed in skin, T-lymphocytes and dendritic cells. Furthermore, an analysis of the expression data available from the Genevar database indicated that rs495337 is associated with increased ZNF313 transcripts levels (P = 0.003), suggesting that the disease susceptibility allele may be a ZNF313 regulatory variant tagged by rs495337. Homology searches indicated that ZNF313 is a paralogue of TRAC-1, an ubiquitin ligase regulating T-cell activation. We performed cell-free assays and confirmed that like TRAC-1, ZNF313 binds ubiquitin via an ubiquitin-interaction motif (UIM). These findings collectively identify a novel psoriasis susceptibility gene, with a putative role in the regulation of immune responses.

Country
United Kingdom
Keywords

Adult, Male, 570, Genotype, Genome, Human, Reverse Transcriptase Polymerase Chain Reaction, Ubiquitin, Recombinant Fusion Proteins, Ubiquitin-Protein Ligases, 610, Proteins, Polymorphism, Single Nucleotide, Linkage Disequilibrium, United Kingdom, Humans, Psoriasis, Female, Genetic Predisposition to Disease, Carrier Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    184
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
184
Top 1%
Top 1%
Top 1%
bronze