Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers and Geotec...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers and Geotechnics
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mitigating ballast degradation with under-sleeper rubber pads: Experimental and numerical perspectives

Authors: Trung Ngo; Buddhima Indraratna;

Mitigating ballast degradation with under-sleeper rubber pads: Experimental and numerical perspectives

Abstract

Abstract This paper presents a study on mitigating the degradation of ballast by placing an under-sleeper rubber pad (USP) beneath a sleeper. Large-scale track process simulation apparatus (TPSA) tests have been carried out on ballast assemblies (with and without USP) subjected to cyclic loadings. Numerical modelling has been performed using a coupled discrete-continuum modelling (coupled DEM-FDM) approach to investigate the role of USP from a micromechanical perspective. Ballast grains are simulated in DEM by bonding of many cylinders together at appropriate sizes and locations; and when those bonds break, they are considered to represent ballast breakage. The capping and subgrade layers are simulated as continuum media using the finite difference method (FDM). Interface elements were developed for transmitting forces and displacements between the discrete and continuum domains. The coupled model is validated by comparing the predicted load-deformation responses with those measured from large-scale TPSA tests. The model is then used to explore changes in the micromechanical aspects of ballast subjected to cyclic loading, including particle connectivity number, contact force distributions, and contact orientations and associated particle breakage. These findings are needed to gain a better insight as to how USPs help to attenuate the load applied in a ballast assembly.

Related Organizations
Keywords

numerical, Engineering, perspectives, experimental, ballast, pads:, rubber, mitigating, under-sleeper, Science and Technology Studies, degradation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!