Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Keratin K6c Mutations Cause Focal Palmoplantar Keratoderma

Authors: Sancy A. Leachman; Edel A. O'Toole; Neil J. Wilson; Frances J.D. Smith; E. Birgitte Lane; E. Birgitte Lane; Andrew G. Messenger; +1 Authors

Keratin K6c Mutations Cause Focal Palmoplantar Keratoderma

Abstract

The palmoplantar keratodermas (PPKs) are a large group of clinically and genetically heterogeneous genodermatoses. The gene defects underlying many PPKs still need to be resolved to facilitate definitive molecular diagnosis and genetic counseling. Dominant-negative mutations in any of the four identified keratin genes, KRT6A, KRT6B, KRT16, or KRT17, cause pachyonychia congenita (PC), characterized by hypertrophic nail dystrophy and other ectodermal features. In PC, focal PPK (FPPK) is the most painful and debilitating phenotypic feature. Some families presenting with FPPK alone, or with minimal nail changes, carry mutations in KRT16; however, most FPPK families do not harbor mutations in any of these keratin genes. Here, we report three unrelated families who presented with familial FPPK with minor or absent nail changes. The four PC/FPPK-related keratin genes were excluded; however, mutational analysis of the recently identified KRT6C gene, encoding keratin K6c, showed heterozygous in-frame deletion mutations in all three kindreds. Affected members of Families 1 and 2 carried the same mutation, p.Asn172del. In Family 3, the mutation p.Ile462-Glu470del co-segregated with the disease. KRT6C was shown to be expressed in the plantar epidermis using reverse transcription-PCR, consistent with the phenotype observed in this tissue. These data expand the genetic testing repertoire for the PPKs.

Keywords

EXPRESSION, Male, Heterozygote, DATABASE, Genetic Linkage, DNA Mutational Analysis, 610, GENE FAMILY, Dermatology, Biochemistry, Keratoderma, Palmoplantar, Humans, Molecular Biology, INTERMEDIATE-FILAMENTS, Genes, Dominant, PACHYONYCHIA-CONGENITA TYPE-1, ATOMIC-STRUCTURE, Reverse Transcriptase Polymerase Chain Reaction, Keratin-6, Cell Biology, K17, Pedigree, Phenotype, Mutation, Keratins, Female, SKIN, Gene Deletion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
hybrid