Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Journal of Gastroenterology & Hepatology
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY NC ND
Data sources: PubMed Central
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Liver cirrhosis prediction for patients with Wilson disease based on machine learning: a case–control study from southwest China

Authors: Chen, Ke; Wan, Yang; Mao, Ju; Lai, Yuqing; Zhuo-ma, Gesang; Hong, Peiwei;

Liver cirrhosis prediction for patients with Wilson disease based on machine learning: a case–control study from southwest China

Abstract

Objectives Wilson disease (WD) is a rare autosomal recessive disease caused by an ATP7B gene mutation. Liver cirrhosis is an important issue that affects the clinical management and prognosis of WD patients. Blood routine examination is a potential biomarker for predicting the occurrence of liver cirrhosis in WD. We aim to construct a predictive model for the occurrence of liver cirrhosis using general clinical information, blood routine examination, urine copper, and serum ceruloplasmin through a machine learning approach. Methods Case–control study of WD patients admitted to West China Fourth Hospital between 2005 and 2020. Patients with a score of at least four in scoring system of WD were enrolled. A machine learning model was constructed by EmpowerStats software according to the general clinical data, blood routine examination, 24 h urinary copper, and serum ceruloplasmin. Results This study analyzed 346 WD patients, of which 246 were without liver cirrhosis. And we found platelet large cell count (P-LCC), red cell distribution width CV (RDW-CV), serum ceruloplasmin, age at diagnosis, and mean corpuscular volume (MCV) were the top five important predictors. Moreover, the model was of high accuracy, with an area under the receiver operating characteristic curve of 0.9998 in the training set and 0.7873 in the testing set. Conclusions In conclusion, the predictive model for predicting liver cirrhosis in WD, constructed by machine learning, had a higher accuracy. And the most important indices in the predictive model were P-LCC, RDW-CV, serum ceruloplasmin, age at diagnosis, and MCV.

Related Organizations
Keywords

Liver Cirrhosis, Machine Learning, China, Hepatolenticular Degeneration, Original Articles: Hepatology, Case-Control Studies, Ceruloplasmin, Humans, Copper

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
hybrid