
Objectives Wilson disease (WD) is a rare autosomal recessive disease caused by an ATP7B gene mutation. Liver cirrhosis is an important issue that affects the clinical management and prognosis of WD patients. Blood routine examination is a potential biomarker for predicting the occurrence of liver cirrhosis in WD. We aim to construct a predictive model for the occurrence of liver cirrhosis using general clinical information, blood routine examination, urine copper, and serum ceruloplasmin through a machine learning approach. Methods Case–control study of WD patients admitted to West China Fourth Hospital between 2005 and 2020. Patients with a score of at least four in scoring system of WD were enrolled. A machine learning model was constructed by EmpowerStats software according to the general clinical data, blood routine examination, 24 h urinary copper, and serum ceruloplasmin. Results This study analyzed 346 WD patients, of which 246 were without liver cirrhosis. And we found platelet large cell count (P-LCC), red cell distribution width CV (RDW-CV), serum ceruloplasmin, age at diagnosis, and mean corpuscular volume (MCV) were the top five important predictors. Moreover, the model was of high accuracy, with an area under the receiver operating characteristic curve of 0.9998 in the training set and 0.7873 in the testing set. Conclusions In conclusion, the predictive model for predicting liver cirrhosis in WD, constructed by machine learning, had a higher accuracy. And the most important indices in the predictive model were P-LCC, RDW-CV, serum ceruloplasmin, age at diagnosis, and MCV.
Liver Cirrhosis, Machine Learning, China, Hepatolenticular Degeneration, Original Articles: Hepatology, Case-Control Studies, Ceruloplasmin, Humans, Copper
Liver Cirrhosis, Machine Learning, China, Hepatolenticular Degeneration, Original Articles: Hepatology, Case-Control Studies, Ceruloplasmin, Humans, Copper
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
