
Abstract Colon cancer develops over a period of 10 to 15 years, providing a window of opportunity for chemoprevention and early intervention. However, few molecular targets for effective colon cancer chemoprevention have been characterized and validated. Protein kinase CβII (PKCβII) plays a requisite role in the initiation of colon carcinogenesis in a preclinical mouse model by promoting proliferation and increased β-catenin accumulation. In this study, we test the hypothesis that PKCβII is an effective target for colon cancer chemoprevention using enzastaurin (LY317615), a PKCβ-selective inhibitor, in a mouse model of colon carcinogenesis. We find that enzastaurin potently reduces azoxymethane-induced colon tumor initiation and progression by inhibiting PKCβII-mediated tumor cell proliferation and β-catenin accumulation. Biochemically, enzastaurin reduces expression of the PKCβII- and β-catenin/T-cell factor–regulated genes PKCβII, cyclooxygenase II, and vascular endothelial growth factor, three genes implicated in colon carcinogenesis. Our results show that enzastaurin is an effective chemopreventive agent in a mouse model of sporadic colon cancer that significantly reduces both tumor initiation and progression by inhibiting expression of proproliferative genes. Thus, PKCβII is an important target for colon cancer chemoprevention and the PKCβ-selective inhibitor enzastaurin may represent an effective chemopreventive agent in patients at high risk for colon cancer. [Cancer Res 2009;69(4):1643–50]
Indoles, Neovascularization, Pathologic, Antineoplastic Agents, Apoptosis, Cell Differentiation, Epithelial Cells, Mice, Inbred C57BL, Mice, Colonic Neoplasms, Protein Kinase C beta, Animals, Humans, Female, Enzyme Inhibitors, Cell Division, Protein Kinase C, beta Catenin
Indoles, Neovascularization, Pathologic, Antineoplastic Agents, Apoptosis, Cell Differentiation, Epithelial Cells, Mice, Inbred C57BL, Mice, Colonic Neoplasms, Protein Kinase C beta, Animals, Humans, Female, Enzyme Inhibitors, Cell Division, Protein Kinase C, beta Catenin
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
