
AbstractRhönite occurs in lower crustal pyroxenite xenoliths erupted in phonolite from the Mount Sidley composite volcano, Marie Byrd Land, Antarctica, as a localized breakdown product, with plagioclase, clinopyroxene, ± olivine ± Ti-magnetite + melt, of kaersutite, and as microphenocrysts (with olivine, plagioclase, clinopyroxene) in pockets of basanitic melt. Rhö nite after kaersutite has a more NaSi-rich/ CaAl-poor composition, lower Ti, and formed at higher oxidation (∼NNO) conditions than rhönite occurring as microphenocrysts in basanite. Comparison with experimentally determined rhönite stability in understaturated alkali basalt and as a reaction product after Ti-amphibole indicates that the Mount Sidley rhönite (and associated minerals) formed between 1090 and 1190°C at <0.5 kbar, presumably during temporary residence of the xenoliths in a shallow magma chamber below the volcanic edifice.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
