Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulation of autophagy in yeast Saccharomyces cerevisiae

Authors: Cebollero, Eduardo; Reggiori, Fulvio;

Regulation of autophagy in yeast Saccharomyces cerevisiae

Abstract

Autophagy is a conserved catabolic process that initially involves the bulk or the selective engulfment of cytosolic components into double-membrane vesicles and successively the transport of the sequestered cargo material into the lysosome/vacuole for degradation. This pathway allows counteracting internal and external stresses, including changes in the nutrient availability, that alter the cell metabolic equilibrium. Consequently, the regulation of autophagy is crucial for maintaining important cellular functions under various conditions and ultimately it is essential for survival. Yeast Saccharomyces cerevisiae has been successfully employed as a model system to study autophagy. For instance, it has allowed the isolation of the factors specifically involved in autophagy, the Atg proteins, and the characterization of some of their molecular roles. In addition, this organism also possesses all the principal signaling cascades that modulate the cell metabolism in response to nutrient availability in higher eukaryotes, including the TOR and the PKA pathways. Therefore, yeast is an ideal system to study the regulation of autophagy by these signaling pathways. Here, we review the current state of our knowledge about the molecular events leading to the induction or inhibition of autophagy in yeast with special emphasis on the regulation of the function of Atg proteins.

Related Organizations
Keywords

Filamentous fungi, Saccharomyces cerevisiae Proteins, Cvt pathway, Saccharomyces cerevisiae/cytology, Hyphae, Saccharomyces cerevisiae, Protein Serine-Threonine Kinases, Sch9/PKB, Autophagy, Protein Serine-Threonine Kinases/metabolism, Geneeskunde(GENK), cAMP/PKA, Transport Vesicles, Molecular Biology, Econometric and Statistical Methods: General, Geneeskunde (GENK), TOR, Cell Biology, Saccharomyces cerevisiae Proteins/metabolism, Yeast, Hyphae/growth & development, Transport Vesicles/metabolism, Autophagy/physiology, Nutrient, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    114
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
114
Top 10%
Top 10%
Top 10%
hybrid