Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eurasian Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eurasian Journal of Medicine
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eurasian Journal of Medicine
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eurasian Journal of Medicine
Article . 2020
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electron Microscopic and Immunohistochemical Examination of the Effect of 2-Aminoethoxydiphenyl Borate on Optic Nerve Injury in A Rat Model

Authors: Demirci, Tuba; Bilge, Nuray; Atilay, Hilal; Uçar, Metin; Özgül Abuç, Özlem;

Electron Microscopic and Immunohistochemical Examination of the Effect of 2-Aminoethoxydiphenyl Borate on Optic Nerve Injury in A Rat Model

Abstract

Objective: We conducted this study to explore the possible protective effect of 2-aminoethoxydiphenyl borate (2-APB) on experimentally induced optic nerve injury in an acute ischemia-reperfusion (AIR) model. Materials and Methods: A total of 30 Wistar albino rats were randomly divided into sham, AIR, and AIR+treatment (AIR10) groups. In the sham group, AIR model was not created. In the AIR group, AIR model was created without the administration of drug. In the AIR10 group, 2-APB was administered 10 min before reperfusion. Results: Tissue samples were subjected to histological, immunohistochemical, and electron microscopic procedures. Histopathological examination revealed intense hypertrophic cells, more glial cells, capillary dilatation, and intense demyelination areas in the AIR group compared to those in the sham and AIR10 groups. Immunohistochemical staining demonstrated an increase in Orai1 and STIM1 immunoreactivity in the AIR group but less intense staining in the AIR10 group. Electron microscopy revealed injury in optic nerve axons in the AIR group, whereas this type of injury occurred to a lesser extent in the AIR10 group. Conclusion: In rats, store-operated Ca2+ entry in the cell had an essential role in optic nerve ischemia-reperfusion injury, and 2-ABP may have a protective effect on optic nerve injury caused due to AIR. Cite this article as: Demirci T, Bilge N, Ucar M, Ozgul Abuc O, Atilay H. Electron Microscopic and Immunohistochemical Examination of the Effect of 2-Aminoethoxydiphenyl Borate on Optic Nerve Injury in A Rat Model. Eurasian J Med 2020; 52(1): 61-6.

Country
Turkey
Keywords

Medicine (General), R5-920

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold