Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5880/fidgeo...
Dataset . 2021
License: CC BY
Data sources: Sygma
GFZ Data Services
Dataset . 2021
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of Strong Motion Waveforms Near the Locations of Detections by the Earthquake Network App in Chile, the USA and Italy

Authors: Steed, Robert; Bossu, Remy; Finazzi, Francesco; Bondár, István; Fallou, Laure;

Analysis of Strong Motion Waveforms Near the Locations of Detections by the Earthquake Network App in Chile, the USA and Italy

Abstract

The 'Earthquake Network’ (EQN) is an app which detects earthquakes by creating an ad-hoc network of smartphones' accelerometer sensors and provides early warnings for earthquakes via the same smartphone app. Detections are not due to individual smartphone measurements but due to near-simultaneous trigger signals from clusters of smartphones running the app. Therefore detections are normally located in the closest populated regions to an earthquake's epicentre. In order to investigate the mechanisms of EQN's earthquake detection system, we searched for seismic accelerometer stations with publically available data that were close to the EQN detection locations (rather than close to the epicentre). This confirmed that EQN's detections followed strong shaking motions but that detections could follow both P-phase or S-phase rather than consistantly being sensitive to only one particular phase. It also showed that detections generally occurred between 0 - 5 seconds after the peak ground acceleration measured by the seismic station. Analysis was conducted on 550 detections made by the EQN system between 2017-12-15 and 2020-01-31 in Chile, Italy and the USA. Strong motion accelerometer data was collected from seismic stations via the FDSN protocol. The data was calibrated, detrended and a small time shift was applied to correct for differences in distances from the epicentre between the EQN detection and the strong motion seismic station. Calibrated waveform data was obtained for 410 EQN detections. Plots were made for each event and an analysis was carried out on the dataset to compare EQN detection times with the peak ground acceleration measured by the nearest seismic station. The dataset consists of a zip-file containing a table of results and some summary graphs derived from it as well as a set of 410 graphs of strong motion files that are presented as image files (png-files). The graphs show the waveform data for a seismic station within 20 km of each EQN detection.

Ground motion data was retrieved from seismic networks via the FDSN protocol via the IRIS and ORFEUS institutes. This data was calibrated using station inventory files also downloaded via FDSN and filtered between 0.5 - 12 Hz. A small time shift was applied to correct for differences in distances from the epicentre between the EQN detection and the strong motion seismic station. This time shift assumed a seismc phase velocity of 8.04km/s.

Keywords

Earthquake Network, EARTH SCIENCE > HUMAN DIMENSIONS > NATURAL HAZARDS > EARTHQUAKES, In Situ Land-based Platforms > GEOPHYSICAL STATIONS/NETWORKS > IRIS-GSN, geological process > seismic activity > earthquake, seismic waves, ground motion, In Situ Land-based Platforms > GEOPHYSICAL STATIONS/NETWORKS > SEISMOLOGICAL STATIONS, safety > safety system > warning system > early warning system, smartphone, In Situ Land-based Platforms > GEOPHYSICAL STATIONS/NETWORKS > FDSN, strong motion, monitoring > seismic monitoring, citizen science, accelerometry, seismic surface waves, EARTH SCIENCE > SOLID EARTH > TECTONICS > EARTHQUAKES > SEISMIC PROFILE > SEISMIC SURFACE WAVES, earthquakes, EARTH SCIENCE > SOLID EARTH > TECTONICS > EARTHQUAKES > EARTHQUAKE OCCURRENCES

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average