
In the present study results of an earlier pilot study by Glenisson, Glanzel and Persson are extended on the basis of larger sets of papers. Full text analysis and traditional bibliometric methods are serially combined to improve the efficiency of the two individual methods. The text mining methodology already introduced in the pilot study is applied to the complete publication year 2003 of the journal Scientometrics. Altogether 85 documents that can be considered research articles or notes have been selected for this exercise. The outcomes confirm the main results of the pilot study, namely, that such hybrid methodology can be applied to both research evaluation and information retrieval. Nevertheless, Scientometrics documents published in 2003 cover a much broader and more heterogeneous spectrum of bibliometrics and related research than those analysed in the pilot study. A modified subject classification based on the scheme used in an earlier study by Schoepflin and Glanzel has been applied for validation purposes.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 100 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
