Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Carbohydrate Polymer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Carbohydrate Polymers
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigations about dissolution of cellulose in the 1-allyl-3-alkylimidazolium chloride ionic liquids

Authors: De-tao Liu; Kun-feng Xia; Wei-hua Cai; Ren-dang Yang; Li-qin Wang; Bin Wang;

Investigations about dissolution of cellulose in the 1-allyl-3-alkylimidazolium chloride ionic liquids

Abstract

Abstract In this work, the 1-allyl-3-alkylimidazolium chloride ionic liquids were synthesized and characterized by increasing carbon atoms (n ≤ 6) of alkyl chains on a cationic 3-imidazole ring. The results indicated that 1-allyl-3-alkylimidazolium chloride with asymmetrical structure on the two sides of a cationic 3-imidazole ring (i.e., n = 1, 2, 6) exhibited alkalinity and lower thermal stabilities, and showed better solubility to the cellulose samples at 60–120 °C than those with symmetrical structures (n = 3, 4). The cellulose samples treated by 20% (w/w) ethylenediamine solution showed better solubility in 1-allyl-3-ethyl, hexyl-imidazolium chloride ionic liquids than that treated with 20% (w/w) NaOH solution at 5 °C for 72 h. XRD and TG analysis indicated that 0 0 2 plane apparent crystallite size as well as thermal stability of the regenerated cellulose samples from the ionic liquids decreased significantly compared with the untreated cellulose samples.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!