Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrinologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrinology
Article
Data sources: UnpayWall
Endocrinology
Article . 2015 . Peer-reviewed
Data sources: Crossref
Endocrinology
Article . 2016
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Isolation and Characterization of Fetal Leydig Progenitor Cells of Male Mice

Authors: Yasuyuki Ohkawa; Miki Inoue; Kanako Miyabayashi; Mikita Suyama; Takashi Baba; Haruhiko Akiyama; Yuichi Shima; +3 Authors

Isolation and Characterization of Fetal Leydig Progenitor Cells of Male Mice

Abstract

AbstractFetal and adult Leydig cells develop in mammalian prenatal and postnatal testes, respectively. In mice, fetal Leydig cells (FLCs) emerge in the interstitial space of the testis at embryonic day 12.5 and thereafter increase in number, possibly through differentiation from progenitor cells. However, the progenitor cells have not yet been identified. Previously, we established transgenic mice in which FLCs are labeled strongly with enhanced green fluorescent protein (EGFP). Interestingly, fluorescence-activated cell sorting provided us with weakly EGFP-labeled cells as well as strongly EGFP-labeled FLCs. In vitro reconstruction of fetal testes demonstrated that weakly EGFP-labeled cells contain FLC progenitors. Transcriptome from the 2 cell populations revealed, as expected, marked differences in the expression of genes required for growth factor/receptor signaling and steroidogenesis. In addition, genes for energy metabolisms such as glycolytic pathways and the citrate cycle were activated in strongly EGFP-labeled cells, suggesting that metabolism is activated during FLC differentiation.

Keywords

Male, Reverse Transcriptase Polymerase Chain Reaction, Gene Expression Profiling, Stem Cells, Citric Acid Cycle, Green Fluorescent Proteins, Gene Expression Regulation, Developmental, Leydig Cells, Cell Differentiation, Mice, Transgenic, Real-Time Polymerase Chain Reaction, Immunohistochemistry, Mice, Fetus, Animals, RNA, Messenger, Energy Metabolism, Gonadal Steroid Hormones, Glycolysis, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
bronze