
We introduce an approach for spatio-temporal human action localization using sparse spatial supervision. Our method leverages the large amount of annotated humans available today and extracts human tubes by combining a state-of-the-art human detector with a tracking-by-detection approach. Given these high-quality human tubes and temporal supervision, we select positive and negative tubes with very sparse spatial supervision, i.e., only one spatially annotated frame per instance. The selected tubes allow us to effectively learn a spatio-temporal action detector based on dense trajectories or CNNs. We conduct experiments on existing action localization benchmarks: UCF-Sports, J-HMDB and UCF-101. Our results show that our approach, despite using sparse spatial supervision, performs on par with methods using full supervision, i.e., one bounding box annotation per frame. To further validate our method, we introduce DALY (Daily Action Localization in YouTube), a dataset for realistic action localization in space and time. It contains high quality temporal and spatial annotations for 3.6k instances of 10 actions in 31 hours of videos (3.3M frames). It is an order of magnitude larger than existing datasets, with more diversity in appearance and long untrimmed videos.
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
