Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Magnetic Resonance i...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Magnetic Resonance in Medicine
Article . 2018 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Magnetic Resonance in Medicine
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2018
Data sources: PubMed Central
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gradient‐echo and spin‐echo blood oxygenation level–dependent functional MRI at ultrahigh fields of 9.4 and 15.2 Tesla

Authors: Han, SoHyun; Son, Jeong Pyo; Cho, Hyungjoon; Park, Jang-Yeon; Kim, Seung-Gi;

Gradient‐echo and spin‐echo blood oxygenation level–dependent functional MRI at ultrahigh fields of 9.4 and 15.2 Tesla

Abstract

PurposeSensitivity and specificity of blood oxygenation level–dependent (BOLD) functional MRI (fMRI) is sensitive to magnetic field strength and acquisition methods. We have investigated gradient‐echo (GE)‐ and spin‐echo (SE)‐BOLD fMRI at ultrahigh fields of 9.4 and 15.2 Tesla.MethodsBOLD fMRI experiments responding to forepaw stimulation were performed with 3 echo times (TE) at each echo type and B0 in α‐chloralose–anesthetized rats. The contralateral forelimb somatosensory region was selected for quantitative analyses.ResultsAt 9.4 T and 15.2 T, average baseline T2* (n = 9) was 26.6 and 17.1 msec, whereas baseline T2 value (n = 9) was 35.7 and 24.5 msec, respectively. Averaged stimulation‐induced ΔR2* was –1.72 s–1 at 9.4 T and –3.09 s–1 at 15.2 T, whereas ΔR2 was –1.19 s–1 at 9.4 T and –1.97 s–1 at 15.2 T. At the optimal TE of tissue T2* or T2, BOLD percent changes were slightly higher at 15.2 T than at 9.4 T (GE: 7.4% versus 6.4% and SE: 5.7% versus 5.4%). The ΔR2* and ΔR2 ratio of 15.2 T to 9.4 T was 1.8 and 1.66, respectively. The ratio of the macrovessel‐containing superficial to microvessel‐dominant parenchymal BOLD signal was 1.73 to 1.76 for GE‐BOLD versus 1.13 to 1.19 for SE‐BOLD, indicating that the SE‐BOLD contrast is less sensitive to macrovessels than GE‐BOLD.ConclusionSE‐BOLD fMRI improves spatial specificity to microvessels compared to GE‐BOLD at both fields. BOLD sensitivity is similar at the both fields and can be improved at ultrahigh fields only for thermal‐noise–dominant ultrahigh‐resolution fMRI.

Country
Korea (Republic of)
Keywords

Male, Brain Mapping, Echo-Planar Imaging, 610, Reproducibility of Results, Image Enhancement, Magnetic Resonance Imaging, Sensitivity and Specificity, Body Temperature, Rats, Oxygen, Rats, Sprague-Dawley, Chloralose, Forelimb, Image Processing, Computer-Assisted, Full Papers—Biophysics and Basic Biomedical Research, Animals, Humans, Computer Simulation, Spin Labels

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
Green
hybrid