Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electrochimica Actaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electrochimica Acta
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrochimica Acta
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electrochemical investigation of chromium nanocarbide coated Ti–6Al–4V and Co–Cr–Mo alloy substrates

Authors: Swaminathan, Viswanathan; Zeng, Haitong; Lawrynowicz, Daniel; Zhang, Zongtao; Gilbert, Jeremy L;

Electrochemical investigation of chromium nanocarbide coated Ti–6Al–4V and Co–Cr–Mo alloy substrates

Abstract

Abstract This study investigated the electrochemical behavior of chromium nano-carbide cermet coating applied on Ti–6Al–4V and Co–Cr–Mo alloys for potential application as wear and corrosion resistant bearing surfaces. The cermet coating consisted of a highly heterogeneous combination of carbides embedded in a metal matrix. The main factors studied were the effect of substrate (Ti–6Al–4V vs. Co–Cr–Mo), solution conditions (physiological vs. 1 M H 2 O 2 of pH 2), time of immersion (1 vs. 24 h) and post coating treatments (passivation and gamma sterilization). The coatings were produced with high velocity oxygen fuel (HVOF) thermal spray technique at atmospheric conditions to a thickness of 250 μm then ground and polished to a finished thickness of 100 μm and gamma sterilized. Native Ti–6Al–4V and Co–Cr–Mo alloys were used as controls. The corrosion behavior was evaluated using potentiodynamic polarization, mechanical abrasion and electrochemical impedance spectroscopy under physiologically representative test solution conditions (phosphate buffered saline, pH 7.4, 37 °C) as well as harsh corrosion environments (pH ∼ 2, 1 M H 2 O 2 , T = 65 °C). Severe environmental conditions were used to assess how susceptible coatings are to conditions that derive from possible crevice-like environments, and the presence of inflammatory species like H 2 O 2 . SEM analysis was performed on the coating surface and cross-section. The results show that the corrosion current values of the coatings (0.4–4 μA/cm 2 ) were in a range similar to Co–Cr–Mo alloy. The heterogeneous microstructure of the coating influenced the corrosion performance. It was observed that the coating impedances for all groups decreased significantly in aggressive environments compared with neutral and also dropped over exposure time. The low frequency impedances of coatings were lower than controls. Among the coated samples, passivated nanocarbide coating on Co–Cr–Mo alloy displayed the least corrosion resistance. However, all the coated materials demonstrated higher corrosion resistance to mechanical abrasion compared to the native alloys.

Country
United States
Related Organizations
Keywords

Biomaterials, Corrosion, EIS, Engineering, Coatings, Materials Science and Engineering, Chemical Engineering, Chromium carbide, Biomedical Engineering and Bioengineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
Green
hybrid