Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Analytical and Bioan...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Analytical and Bioanalytical Chemistry
Article . 2002 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Thick film biosensors for metabolites in undiluted whole blood and plasma samples

Authors: Bernhard P H, Schaffar;

Thick film biosensors for metabolites in undiluted whole blood and plasma samples

Abstract

The new electrochemical thick film biosensors from Roche Diagnostics are presented. Following considerations about the principal requirements that biosensors have to fulfil to be useful for diagnostic purposes, the basic design of these thick film biosensors is shown. In this paper, the new generation of biosensors for glucose, lactate and urea are presented, as well as data from a new biosensor for creatinine. All biosensors are designed for multiple use, at minimum 500 samples or 1 week in-use (depending on type of enzyme used), for determinations in undiluted whole blood or plasma, with extra electrodes to compensate for interferences. The sensors are integrated in a disposable cassette requiring 38 microtl sample volume. The analytical ranges of the sensors scope well with the normal and pathological concentrations of metabolites in human blood, e.g. for glucose 0.5-40.0 mmol/L. Both biosensors and interference-compensating electrodes are developed to have a cycle time of 90 s maximum. Method comparison diagrams show excellent correlation of results obtained by biosensors compared to results achieved by reference methods. In addition, the possibility of urea and creatinine determinations in diluted urine is presented.

Related Organizations
Keywords

Plasma, Animals, Humans, Biosensing Techniques, Urine, Creatine, Blood Chemical Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!