Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Calciumarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Calcium
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Calcium
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2008
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Calcium
Article . 2008
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Calcium
Article . 2009
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The presence of a functional t-tubule network increases the sensitivity of RyR1 to agonists in skinned rat skeletal muscle fibres

Authors: Adrian M. Duke; Derek S. Steele;

The presence of a functional t-tubule network increases the sensitivity of RyR1 to agonists in skinned rat skeletal muscle fibres

Abstract

Single mechanically skinned extensor digitorum Longus (EDL) rat fibres were used as a model to study the influence of functional t-tubules on the properties of RyR1 in adult skeletal muscle. Fibres were superfused with solutions approximating to the intracellular milieu. Following skinning, the t-tubules re-seal and repolarise, allowing the sarcoplasmic reticulum (SR) Ca2+ release to be activated by field stimulation. However, in the present study, some fibres exhibited localised regions where depolarisation-induced SR Ca2+ release was absent, due to failure of the t-tubules to re-seal. When these fibres were exposed to caffeine to directly activate RyR1, regions with re-sealed t-tubules exhibited greater sensitivity to submaximal (2-5 mM) levels of caffeine (n = 8), while the response to a supramaximal SR Ca2+ release stimulus was uniform (n = 8, p < 0.05). This difference in RyR1 sensitivity was unaffected by sustained depolarisation of the t-tubule network. However, after saponin permeabilization of the t-tubules or withdrawal of Ca2+ from the t-tubules before skinning, the difference in agonist sensitivity was abolished. These results suggest that in adult skeletal muscle fibres, the presence of a functional t-tubule network increases the sensitivity of RyR1 to agonists via a mechanism that involves binding of Ca2+ to an extracellular regulatory site.

Related Organizations
Keywords

Ca2+ regulation, Physiology, Sarcoplasmic reticulum, Ryanodine Receptor Calcium Release Channel, Skeletal, Cell Biology, Article, Rats, Sarcoplasmic Reticulum, Caffeine, RyR1, Animals, Calcium, t-Tubules, Muscle, Skeletal, Molecular Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
hybrid