Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The International Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The International Journal Of Cell Cloning
Article . 2015 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HKU Scholars Hub
Article . 2015
Data sources: HKU Scholars Hub
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

LGR5 Promotes Breast Cancer Progression and Maintains Stem-Like Cells Through Activation of Wnt/β-Catenin Signaling

Authors: Lu, Yang; Hailin, Tang; Yanan, Kong; Xinhua, Xie; Jianping, Chen; Cailu, Song; Xiaoping, Liu; +4 Authors

LGR5 Promotes Breast Cancer Progression and Maintains Stem-Like Cells Through Activation of Wnt/β-Catenin Signaling

Abstract

Abstract The cancer stem cell (CSC) hypothesis suggests that a subset of cancer cells possesses stem cell properties and is crucial in tumor initiation, metastasis, and drug resistance. To determine the mechanism of CSCs in breast cancer, we focused on LGR5, a marker of adult stem cells that potentially serves as a functional factor in CSCs. LGR5 overexpression was detected in breast cancer and significantly associated with breast cancer recurrence and poor outcome. LGR5 promoted cell mobility, tumor formation, and epithelial-mesenchymal transition in breast cancer cells by activating Wnt/β-catenin signaling. In addition, LGR5 was more highly expressed in tumorspheres and increased the stemness of breast cancer cells. Compared with LGR5 low-expression (LGR5low) cells, LGR5high cells exhibited CSC/tumor-initiating cell-like properties, including the formation of self-renewing spheres and high tumorigenicity. Importantly, our studies indicate that LGR5 activation of Wnt/β-catenin signaling is a possible mechanism to regulate breast CSC/tumor-initiating cell renewal. These findings indicate that LGR5 not only participates in carcinogenesis but also maintained stemness by activating Wnt/β-catenin signaling in breast cancer. Stem Cells 2015;33:2913–2924

Related Organizations
Keywords

Adult, Breast Neoplasms, Middle Aged, Xenograft Model Antitumor Assays, Receptors, G-Protein-Coupled, Gene Expression Regulation, Neoplastic, Mice, Cell Transformation, Neoplastic, Spheroids, Cellular, Neoplastic Stem Cells, Animals, Humans, Female, Wnt Signaling Pathway, beta Catenin, Aged, Cell Proliferation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    149
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
149
Top 1%
Top 10%
Top 1%
hybrid