Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular & Cellular...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular & Cellular Proteomics
Article . 2007 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular & Cellular Proteomics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Temporal Analysis of Sucrose-induced Phosphorylation Changes in Plasma Membrane Proteins of Arabidopsis

Authors: Niittyla, Totte; Fuglsang, Anja Thoe; Palmgren, Michael Gjedde; Frommer, Wolf B.; Schulze, Waltraud X.;

Temporal Analysis of Sucrose-induced Phosphorylation Changes in Plasma Membrane Proteins of Arabidopsis

Abstract

Sucrose is the main product of photosynthesis and the most common transport form of carbon in plants. In addition, sucrose is a compound that serves as a signal affecting metabolic flux and development. Here we provide first results of externally induced phosphorylation changes of plasma membrane proteins in Arabidopsis. In an unbiased approach, seedlings were grown in liquid medium with sucrose and then depleted of carbon before sucrose was resupplied. Plasma membranes were purified, and phosphopeptides were enriched and subsequently analyzed quantitatively by mass spectrometry. In total, 67 phosphopeptides were identified, most of which were quantified over five time points of sucrose resupply. Among the identified phosphorylation sites, the well described phosphorylation site at the C terminus of plasma membrane H(+)-ATPases showed a relative increase in phosphorylation level in response to sucrose. This corresponded to a significant increase of proton pumping activity of plasma membrane vesicles from sucrose-supplied seedlings. A new phosphorylation site was identified in the plasma membrane H(+)-ATPase AHA1 and/or AHA2. This phosphorylation site was shown to be crucial for ATPase activity and overrode regulation via the well known C-terminal phosphorylation site. Novel phosphorylation sites were identified for both receptor kinases and cytosolic kinases that showed rapid increases in relative intensities after short times of sucrose treatment. Seven response classes were identified including non-responsive, rapid increase (within 3 min), slow increase, and rapid decrease. Relative quantification of phosphorylation changes by phosphoproteomics provides a means for identification of fast responses to external stimuli in plants as a basis for further functional characterization.

Keywords

Phosphopeptides, Sucrose, Time Factors, Arabidopsis Proteins, Cell Membrane, Molecular Sequence Data, Arabidopsis, Membrane Transport Proteins, Aquaporins, Mass Spectrometry, Substrate Specificity, Plasma Membrane Calcium-Transporting ATPases, Proton-Translocating ATPases, Seedlings, Cluster Analysis, Amino Acid Sequence, Phosphorylation, Protein Kinases, Plant Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    247
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
247
Top 1%
Top 10%
Top 1%
gold