Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 1999 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 1999
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inferring the Fitness Effects of DNA Mutations From Polymorphism and Divergence Data: Statistical Power to Detect Directional Selection Under Stationarity and Free Recombination

Authors: H, Akashi;

Inferring the Fitness Effects of DNA Mutations From Polymorphism and Divergence Data: Statistical Power to Detect Directional Selection Under Stationarity and Free Recombination

Abstract

Abstract The fitness effects of classes of DNA mutations can be inferred from patterns of nucleotide variation. A number of studies have attributed differences in levels of polymorphism and divergence between silent and replacement mutations to the action of natural selection. Here, I investigate the statistical power to detect directional selection through contrasts of DNA variation among functional categories of mutations. A variety of statistical approaches are applied to DNA data simulated under Sawyer and Hartl's Poisson random field model. Under assumptions of free recombination and stationarity, comparisons that include both the frequency distributions of mutations segregating within populations and the numbers of mutations fixed between populations have substantial power to detect even very weak selection. Frequency distribution and divergence tests are applied to silent and replacement mutations among five alleles of each of eight Drosophila simulans genes. Putatively “preferred” silent mutations segregate at higher frequencies and are more often fixed between species than “unpreferred” silent changes, suggesting fitness differences among synonymous codons. Amino acid changes tend to be either rare polymorphisms or fixed differences, consistent with a combination of deleterious and adaptive protein evolution. In these data, a substantial fraction of both silent and replacement DNA mutations appear to affect fitness.

Related Organizations
Keywords

Recombination, Genetic, Polymorphism, Genetic, Models, Genetic, Adaptation, Biological, Genes, Insect, DNA, Evolution, Molecular, Mutation, Animals, Insect Proteins, Drosophila, Selection, Genetic, Mathematical Computing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    131
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
131
Top 10%
Top 10%
Top 1%
hybrid