Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Involvement of integrin β4 in ozone stress-induced airway hyperresponsiveness

Authors: Chi, Liu; Yang, Xiang; Hui-jun, Liu; Ge, Gao; Susan T, Howard; Xiao-lin, Zhu; Xiao-qun, Qin;

Involvement of integrin β4 in ozone stress-induced airway hyperresponsiveness

Abstract

It is known that ozone stress can induce airway hyperresponsiveness (AHR). The underlying cellular and molecular mechanisms are not fully understood. We constructed a successive ozone-stressed rat model and showed that AHR caused by ozone stress presented as increased lung resistance (R(L)) to inhaled histamine but not baseline R(L). Meanwhile, structural disruption and decreased expression of integrin beta4 on airway epithelia were observed. Further regression analysis revealed a significant negative correlation between increases in R(L) to histamine (at 0.32 mg/ml) and mRNA expression of integrin beta4. Moreover, when integrin beta4 on human bronchial epithelial cells was knocked down, we found that reactive oxygen species was increased and apoptosis rates were higher. Overall, this study suggests that downregulation of integrin beta4 is important for the development ozone stress-induced AHR, presumably because it causes increased oxidative damage and epithelial apoptosis.

Keywords

Male, Air Pollutants, Airway Resistance, Integrin beta4, Apoptosis, Respiratory Mucosa, Cell Line, Rats, Rats, Sprague-Dawley, Oxidative Stress, Ozone, Gene Knockdown Techniques, Administration, Inhalation, Animals, Humans, Bronchial Hyperreactivity, RNA, Small Interfering, Lung, Histamine

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!