Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioorganic & Medicin...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioorganic & Medicinal Chemistry Letters
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Potent and selective P2–P3 ketoamide inhibitors of cathepsin K with good pharmacokinetic properties via favorable P1′, P1, and/or P3 substitutions

Authors: David Barrett; Aaron B. Miller; John G. Catalano; Kevin J. Wells-Knecht; Derril H. Willard; Stacey T. Long; Lisa M. Shewchuk; +4 Authors

Potent and selective P2–P3 ketoamide inhibitors of cathepsin K with good pharmacokinetic properties via favorable P1′, P1, and/or P3 substitutions

Abstract

A series of ketoamides were synthesized and evaluated for inhibitory activity against cathepsin K. Exploration of the interactions between achiral P(2) substituents and the cysteine protease based on molecular modelling suggestions resulted in potent cathepsin K inhibitors that demonstrated high selectivity versus cathepsins B, H, and L. Subsequent modifications of the P(3), P(1), and P(1') moieties afforded orally bioavailable inhibitors.

Related Organizations
Keywords

Structure-Activity Relationship, Binding Sites, Cathepsin K, Humans, Cysteine Proteinase Inhibitors, Amides, Cathepsins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!