
doi: 10.3390/rs17081373
Identified as early as 2000, the challenges involved in developing and assessing remote sensing models with small datasets remain, with one key issue persisting: the misuse of random sampling to generate training and testing data. This practice often introduces a high degree of correlation between the sets, leading to an overestimation of model generalizability. Despite the early recognition of this problem, few researchers have investigated its nuances or developed effective sampling techniques to address it. Our survey highlights that mitigation strategies to reduce this bias remain underutilized in practice, distorting the interpretation and comparison of results across the field. In this work, we introduce a set of desirable characteristics to evaluate sampling algorithms, with a primary focus on their tendency to induce correlation between training and test data, while also accounting for other relevant factors. Using these characteristics, we survey 146 articles, identify 16 unique sampling algorithms, and evaluate them. Our evaluation reveals two broad archetypes of sampling techniques that effectively mitigate correlation and are suitable for model development.
remote sensing, correlation, Science, model assessment, Q, sampling algorithm, generalization
remote sensing, correlation, Science, model assessment, Q, sampling algorithm, generalization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
