Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Image Processing
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structure-Coherent Deep Feature Learning for Robust Face Alignment

Authors: Chunze Lin; Beier Zhu; Quan Wang; Renjie Liao; Chen Qian; Jiwen Lu; Jie Zhou;

Structure-Coherent Deep Feature Learning for Robust Face Alignment

Abstract

In this paper, we propose a structure-coherent deep feature learning method for face alignment. Unlike most existing face alignment methods which overlook the facial structure cues, we explicitly exploit the relation among facial landmarks to make the detector robust to hard cases such as occlusion and large pose. Specifically, we leverage a landmark-graph relational network to enforce the structural relationships among landmarks. We consider the facial landmarks as structural graph nodes and carefully design the neighborhood to passing features among the most related nodes. Our method dynamically adapts the weights of node neighborhood to eliminate distracted information from noisy nodes, such as occluded landmark point. Moreover, different from most previous works which only tend to penalize the landmarks absolute position during the training, we propose a relative location loss to enhance the information of relative location of landmarks. This relative location supervision further regularizes the facial structure. Our approach considers the interactions among facial landmarks and can be easily implemented on top of any convolutional backbone to boost the performance. Extensive experiments on three popular benchmarks, including WFLW, COFW and 300W, demonstrate the effectiveness of the proposed method. In particular, due to explicit structure modeling, our approach is especially robust to challenging cases resulting in impressive low failure rate on COFW and WFLW datasets. The model and code are publicly available at https://github.com/BeierZhu/Sturcture-Coherency-Face-Alignment.

Related Organizations
Keywords

Deep Learning, Databases, Factual, Automated Facial Recognition, Face, Humans, Anatomic Landmarks

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!