Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sequence specificity of heat-labile sites in DNA induced by mitomycin C

Authors: Junji Morita; Kazumitsu Ueda; Tohru Komano;

Sequence specificity of heat-labile sites in DNA induced by mitomycin C

Abstract

The sequence specificity of the mitomycin C-DNA interaction was directly determined by using DNA sequencing techniques and by using 3'- or 5'-end-labeled DNA fragments of defined sequence as substrates. Mitomycin C reduced with sodium borohydride induced heat-labile sites in DNA preferentially at specific sequences. The heat-labile sites were induced most preferentially at the dinucleotide sequence G-T ( especially Pu G-T), which was determined by scanning autoradiograms with a microdensitometer after gel electrophoresis. DNA was cleaved at the 3' side of deoxyguanosines and of some deoxyadenosines by heat treatment. Oligonucleotides produced by heat treatment after reaction with reduced mitomycin C contained phosphoryl groups at the 5' termini. The 3' termini seemed not to have simple structures, judging from their electrophoretic mobilities. Oxygen radicals such as singlet oxygen and hydroxyl radical were possibly involved in the induction of heat-labile sites.

Keywords

Antibiotics, Antineoplastic, Hot Temperature, Base Sequence, Chemical Phenomena, Mitomycin, Mitomycins, Chemistry, DNA, Viral, Oxidation-Reduction, Phosphorus Radioisotopes, Bacteriophage phi X 174

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!