
Abstract Gamma functions are widely used in an effort to represent characteristics of observed raindrop size distributions, especially at the small-particle end. However, available instruments do not agree about the character of the small-drop region, and for many purposes that part of the spectrum is unimportant. At the large-drop end, sampling limitations impede reliable measurements. Thus, when moment methods are used to determine parameters for the fitted functions, the experimental uncertainties tend to be greater than the differences in important bulk quantities, such as rainfall rate or radar reflectivity factor, between the resulting gamma distributions and corresponding, simpler exponential distribution functions. It consequently makes little practical difference whether exponential or gamma functions are employed, and the exponential model is appropriate for many purposes.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
