Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Alzheimer’s Research...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Alzheimer’s Research & Therapy
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-Inserm
Article . 2023
License: CC BY
Data sources: HAL-Inserm
versions View all 5 versions
addClaim

Comparison of ultrasensitive and mass spectrometry quantification of blood-based amyloid biomarkers for Alzheimer’s disease diagnosis in a memory clinic cohort

Authors: Hirtz, Christophe; Busto, Germain; Bennys, Karim; Kindermans, Jana; Navucet, Sophie; Tiers, Laurent; Lista, Simone; +6 Authors

Comparison of ultrasensitive and mass spectrometry quantification of blood-based amyloid biomarkers for Alzheimer’s disease diagnosis in a memory clinic cohort

Abstract

Abstract Background Alzheimer’s disease (AD) is a complex neurodegenerative disorder with β-amyloid pathology as a key underlying process. The relevance of cerebrospinal fluid (CSF) and brain imaging biomarkers is validated in clinical practice for early diagnosis. Yet, their cost and perceived invasiveness are a limitation for large-scale implementation. Based on positive amyloid profiles, blood-based biomarkers should allow to detect people at risk for AD and to monitor patients under therapeutics strategies. Thanks to the recent development of innovative proteomic tools, the sensibility and specificity of blood biomarkers have been considerably improved. However, their diagnosis and prognosis relevance for daily clinical practice is still incomplete. Methods The Plasmaboost study included 184 participants from the Montpellier’s hospital NeuroCognition Biobank with AD (n = 73), mild cognitive impairments (MCI) (n = 32), subjective cognitive impairments (SCI) (n = 12), other neurodegenerative diseases (NDD) (n = 31), and other neurological disorders (OND) (n = 36). Dosage of β-amyloid biomarkers was performed on plasma samples using immunoprecipitation-mass spectrometry (IPMS) developed by Shimadzu (IPMS-Shim Aβ42, Aβ40, APP669–711) and Simoa Human Neurology 3-PLEX A assay (Aβ42, Aβ40, t-tau). Links between those biomarkers and demographical and clinical data and CSF AD biomarkers were investigated. Performances of the two technologies to discriminate clinically or biologically based (using the AT(N) framework) diagnosis of AD were compared using receiver operating characteristic (ROC) analyses. Results The amyloid IPMS-Shim composite biomarker (combining APP669–711/Aβ42 and Aβ40/Aβ42 ratios) discriminated AD from SCI (AUC: 0.91), OND (0.89), and NDD (0.81). The IPMS-Shim Aβ42/40 ratio also discriminated AD from MCI (0.78). IPMS-Shim biomarkers have similar relevance to discriminate between amyloid-positive and amyloid-negative individuals (0.73 and 0.76 respectively) and A−T−N−/A+T+N+ profiles (0.83 and 0.85). Performances of the Simoa 3-PLEX Aβ42/40 ratio were more modest. Pilot longitudinal analysis on the progression of plasma biomarkers indicates that IPMS-Shim can detect the decrease in plasma Aβ42 that is specific to AD patients. Conclusions Our study confirms the potential usefulness of amyloid plasma biomarkers, especially the IPMS-Shim technology, as a screening tool for early AD patients.

Country
France
Keywords

[SDV.IB] Life Sciences [q-bio]/Bioengineering, Proteomics, Amyloid, IPMS, Amyloid beta-Peptides, Research, [SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology, Neurosciences. Biological psychiatry. Neuropsychiatry, tau Proteins, Peptide Fragments, Plasma, Simoa, Alzheimer Disease, Diagnosis, Humans, Neurology. Diseases of the nervous system, RC346-429, [SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM], Alzheimer’s disease, Biomarkers, RC321-571

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
Green
gold