
AbstractTime-resolved X-ray tomographic microscopy is an invaluable technique to investigate dynamic processes in 3D for extended time periods. Because of the limited signal-to-noise ratio caused by the short exposure times and sparse angular sampling frequency, obtaining quantitative information through post-processing remains challenging and requires intensive manual labor. This severely limits the accessible experimental parameter space and so, prevents fully exploiting the capabilities of the dedicated time-resolved X-ray tomographic stations. Though automatic approaches, often exploiting iterative reconstruction methods, are currently being developed, the required computational costs typically remain high. Here, we propose a highly efficient reconstruction and classification pipeline (SIRT-FBP-MS-D-DIFF) that combines an algebraic filter approximation and machine learning to significantly reduce the computational time. The dynamic features are reconstructed by standard filtered back-projection with an algebraic filter to approximate iterative reconstruction quality in a computationally efficient manner. The raw reconstructions are post-processed with a trained convolutional neural network to extract the dynamic features from the low signal-to-noise ratio reconstructions in a fully automatic manner. The capabilities of the proposed pipeline are demonstrated on three different dynamic fuel cell datasets, one exploited for training and two for testing without network retraining. The proposed approach enables automatic processing of several hundreds of datasets in a single day on a single GPU node readily available at most institutions, so extending the possibilities in future dynamic X-ray tomographic investigations.
Microscopy, Science, Q, Computational science, R, Computational science; Fuel cells; Imaging techniques; Microscopy; Scientific data; Software, Scientific data, Imaging techniques, Article, Medicine, Fuel cells, Software
Microscopy, Science, Q, Computational science, R, Computational science; Fuel cells; Imaging techniques; Microscopy; Scientific data; Software, Scientific data, Imaging techniques, Article, Medicine, Fuel cells, Software
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
