<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) has been reported to participate in the pathogenesis of inflammatory diseases. However, whether Tim-3 is involved in hepatitis B virus (HBV) infection remains unknown. Here, we studied the expression and function of Tim-3 in a hydrodynamics-based mouse model of HBV infection. A significant increase of Tim-3 expression on hepatic T lymphocytes, especially on CD8+ T cells, was demonstrated in HBV model mice from day 7 to day 18. After Tim-3 knockdown by specific shRNAs, significantly increased IFN-gamma production from hepatic CD8+ T cells in HBV model mice was observed. Very interestingly, we found Tim-3 expression on CD8+ T cells was higher in HBV model mice with higher serum anti-HBs production. Moreover, Tim-3 knockdown influenced anti-HBs production in vivo. Collectively, our data suggested that Tim-3 might act as a potent regulator of antiviral T-cell responses in HBV infection.
Male, Mice, Inbred BALB C, Macrophages, CD8-Positive T-Lymphocytes, Hepatitis B, Cell Line, Disease Models, Animal, Interferon-gamma, Mice, Liver, Gene Knockdown Techniques, Animals, Receptors, Virus, Hepatitis A Virus Cellular Receptor 2
Male, Mice, Inbred BALB C, Macrophages, CD8-Positive T-Lymphocytes, Hepatitis B, Cell Line, Disease Models, Animal, Interferon-gamma, Mice, Liver, Gene Knockdown Techniques, Animals, Receptors, Virus, Hepatitis A Virus Cellular Receptor 2
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 63 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |