Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hippocampusarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hippocampus
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aperta - TÜBİTAK Açık Arşivi
Other literature type . 2013
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hippocampus
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Hippocampus
Article . 2013
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DAG‐sensitive and Ca2+ permeable TRPC6 channels are expressed in dentate granule cells and interneurons in the hippocampal formation

Authors: Nagy, Gergő; Botond, Gergő; Borhegyi, Zsolt; Plummer, Nicholas W.; Freund, Tamás; Hájos, Norbert;

DAG‐sensitive and Ca2+ permeable TRPC6 channels are expressed in dentate granule cells and interneurons in the hippocampal formation

Abstract

AbstractMembers of the transient receptor potential (TRP) cation channel family play important roles in several neuronal functions. To understand the precise role of these channels in information processing, their presence on neuronal elements must be revealed. In this study, we investigated the localization of TRPC6 channels in the adult hippocampal formation. Immunostainings with a specific antibody, which was validated in Trpc6 knockout mice, showed that in the dentate gyrus, TRPC6 channels are strongly expressed in granule cells. Immunogold staining revealing the subcellular localization of TRPC6 channels clarified that these proteins were predominantly present on the membrane surface of the dendritic shafts of dentate granule cells, and also in their axons, often associated with intracellular membrane cisternae. In addition, TRPC6 channels could be observed in the dendrites of some interneurons. Double immunofluorescent staining showed that TRPC6 channels were present in the dendrites of hilar interneurons and hippocampal interneurons with horizontal dendrites in the stratum oriens expressing mGlu1a receptors, whereas parvalbumin immunoreactivity was revealed in TRPC6‐expressing dendrites with radial appearance in the stratum radiatum. Electron microscopy showed that the immunogold particles depicting TRPC6 channels were located on the surface membranes of the interneuron dendrites. Our results suggest that TRPC6 channels are in a key position to alter the information entry into the trisynaptic loop of the hippocampal formation from the entorhinal cortex, and to control the function of both feed‐forward and feed‐back inhibitory circuits in this brain region. © 2012 Wiley Periodicals, Inc.

Country
Hungary
Keywords

Male, Mice, Knockout, Neurons, Microscopy, Confocal, neurológia, Fluorescent Antibody Technique, Hippocampus, Immunohistochemistry, RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry / idegkórtan, Rats, Mice, pszichiátria, Dentate Gyrus, TRPC6 Cation Channel, Animals, Rats, Wistar, TRPC Cation Channels

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 7
  • 7
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
29
Top 10%
Average
Top 10%
7
Green
bronze