Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nephrology Dialysis ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nephrology Dialysis Transplantation
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

BMP-7 fails to attenuate TGF- 1-induced epithelial-to-mesenchymal transition in human proximal tubule epithelial cells

Authors: Rochelle L. Argentieri; Francis Farrell; Paul L. Dudas;

BMP-7 fails to attenuate TGF- 1-induced epithelial-to-mesenchymal transition in human proximal tubule epithelial cells

Abstract

In rodent models of chronic renal disease bone morphogenetic protein-7 (BMP-7) has been shown to halt disease progression and promote recovery. Subsequent studies utilizing immortalized rodent renal cell lines showed that BMP-7 was renoprotective by antagonizing TGF-beta1-stimulated epithelial-to-mesenchymal transition (EMT). The present study sought to determine if BMP-7 prevents TGF-beta1-induced EMT in primary (RPTEC) and immortalized (HK-2) human proximal tubule epithelial cells.EMT was determined by quantitative real-time PCR analysis of e-cadherin, vimentin, CTGF and TGF-beta1 transcript expression and immunocytochemical analysis of ZO-1 and alpha-smooth muscle actin (alpha-SMA) protein expression following TGF-beta1 treatment in RPTEC and HK-2 cells.In RPTEC and HK-2 cells, TGF-beta1 significantly reduced e-cadherin expression and significantly increased vimentin, CTGF and TGF-beta1 expression. TGF-beta1 also diminished ZO-1 immunoreactivity and increased alpha-SMA expression in confluent cell monolayers. Co-incubation of TGF-beta1 with an anti-TGF-beta1 neutralizing antibody substantially reduced the cytokine's effects, which indicated EMT in these cells was inhibitable. Co-administration of BMP-7 over a broad concentration range (0.01-100 microg/ml) with TGF-beta1 failed to attenuate EMT in RPTEC or HK-2 cells, as demonstrated by no inhibition of altered e-cadherin, vimentin, CTGF and TGF-beta1 expression and no restoration of ZO-1 immunoreactivity. Furthermore, when BMP-7 was applied to proximal tubule cells alone, it also decreased e-cadherin expression and increased vimentin, CTGF and TGF-beta1 expression. Additionally, BMP-7 failed to induce the mesenchymal-to-epithelial transition (MET) in NRK-49F rat renal fibroblasts. BMP-7 did however prevent TGF-beta1-mediated e-cadherin downregulation in TCMK-1 mouse renal tubular epithelial cells. BMP-7 activity was routinely confirmed by examining BMP-7-induced phosphorylation of SMADs 1/5/8, BMP-7 regulation of BMPR-IA, BMP-7-mediated reduction of IL-6 transcript expression and BMP-7-mediated reduction of secreted IL-6 and IL-8 proteins.In the present study, despite confirming BMP-7 regulation of receptor expression and induction of downstream signalling events, we were unable to demonstrate BMP-7 inhibition of EMT in either primary or immortalized human proximal tubule cells. Moreover, we were unable to demonstrate BMP-7-stimulated MET in rat renal fibroblasts. A protective effect was however observed at an elevated BMP-7 concentration in mouse renal tubular epithelial cells.

Keywords

Interleukin-6, Bone Morphogenetic Protein 7, Interleukin-8, Connective Tissue Growth Factor, Membrane Proteins, Cell Differentiation, Epithelial Cells, Cadherins, Phosphoproteins, Actins, Cell Line, Rats, Kidney Tubules, Proximal, Mesoderm, Transforming Growth Factor beta1, Mice, Zonula Occludens-1 Protein, Animals, Humans, Vimentin

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%
bronze