Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Structural Control and Health Monitoring
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of the characteristics of isolation and mitigation devices on the response of single‐degree‐of‐freedom vibro‐impact systems with two‐sided bumpers and gaps via shaking table tests

Authors: Andreaus U.; De Angelis M.;

Influence of the characteristics of isolation and mitigation devices on the response of single‐degree‐of‐freedom vibro‐impact systems with two‐sided bumpers and gaps via shaking table tests

Abstract

During strong earthquakes, structural pounding may occur between structures (buildings, bridges, strategic facilities, critical equipment, etc.) and the surrounding moat wall because of the limited separation distance and the deformations of the isolator. An arrangement that favors the solution of this problem is the interposition of shock absorbers. Thus, the influence of geometrical and mechanical characteristics of isolation and mitigation devices on nonlinear, nonsmooth response of vibro-impact systems is experimentally investigated in this paper on the basis of a laboratory campaign of experimental tests. Shaking table tests were carried out under a harmonic excitation in order to investigate two different configurations: the absence and the presence of bumpers. Three different values of the table acceleration peak were applied, four different amplitude values of the total gap between mass and bumpers were considered, and also four different types of bumpers were employed; moreover, two problems were addressed, namely, control of excessive displacements and control of excessive accelerations, and hence, two types of normalization were adopted in order to better interpret experimental results. Suitable choices of pairs of bumpers and gaps were suggested as a trade-off between conflicting objectives. Furthermore, a numerical model was proposed, and its governing parameters identified in order to simulate the experimental results.

Country
Italy
Keywords

displacement and acceleration control; seismic protection; shaking table; structural pounding; two-sided bumpers; vibro-impact system

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Green
gold