
pmid: 32016894
Arrestin binding to G protein-coupled receptors (GPCRs) plays a vital role in receptor signaling. Recently, the crystal structure of rhodopsin bound to activated visual arrestin was resolved using XFEL (X-ray free electron laser). However, even with the crystal structure in hand, our ability to understand GPCR-arrestin binding is limited by the availability of accurate tools to explore receptor-arrestin interactions. We applied fragment molecular orbital (FMO) method to explore the interactions formed between the residues of rhodopsin and arrestin. FMO enables ab initio approaches to be applied to systems that conventional quantum mechanical (QM) methods would be too compute-expensive. The FMO calculations detected 35 significant interactions involved in rhodopsin-arrestin binding formed by 25 residues of rhodopsin and 28 residues of arrestin. Two major regions of interaction were identified: at the C-terminal tail of rhodopsin (D330-S343) and where the "finger loop" (G69-T79) of arrestin directly inserts into rhodopsin active core. Out of these 35 interactions, 23 were mainly electrostatic and 12 hydrophobic in nature.
Rhodopsin, Pair interaction energy (PIE), Arrestin, Fragment molecular orbital method (FMO), Biased ligands, Crystallography, X-Ray, Signaling, Quantum mechanics (QM), Receptors, G-Protein-Coupled, G protein-coupled receptors (GPCR), Quantum Theory, Chemical interactions, Protein Binding
Rhodopsin, Pair interaction energy (PIE), Arrestin, Fragment molecular orbital method (FMO), Biased ligands, Crystallography, X-Ray, Signaling, Quantum mechanics (QM), Receptors, G-Protein-Coupled, G protein-coupled receptors (GPCR), Quantum Theory, Chemical interactions, Protein Binding
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
