Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers & Graphics
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Beauty3DFaceNet: Deep geometry and texture fusion for 3D facial attractiveness prediction

Authors: Qinjie Xiao; You Wu; Dinghong Wang; Yong-Liang Yang; Xiaogang Jin 0001;

Beauty3DFaceNet: Deep geometry and texture fusion for 3D facial attractiveness prediction

Abstract

Abstract We present Beauty3DFaceNet, the first deep convolutional neural network to predict attractiveness on 3D faces with both geometry and texture information. The proposed network can learn discriminative and complementary 2D and 3D facial features, allowing accurate attractiveness prediction for 3D faces. The main component of our network is a fusion module that fuses geometric features and texture features. We further employ a novel sampling strategy for our network based on a prior of facial landmarks, which improves the performance of learning aesthetic features from a face point cloud. Comparing to previous work, our approach takes full advantage of 3D geometry and 2D texture and does not rely on handcrafted features based on highly accurate facial characteristics such as feature points. To facilitate 3D facial attractiveness research, we also construct the first 3D face dataset ShadowFace3D, which contains 6,000 high-quality 3D faces with attractiveness labeled by human annotators. Extensive quantitative and qualitative evaluations show that Beauty3DFaceNet achieves a significant correlation with the average human ratings. This validates that a deep learning network can effectively learn and predict 3D facial attractiveness.

Country
United Kingdom
Related Organizations
Keywords

Feature fusion, /dk/atira/pure/subjectarea/asjc/1700/1709; name=Human-Computer Interaction, /dk/atira/pure/subjectarea/asjc/1700/1711; name=Signal Processing, Datasets, Deep learning, /dk/atira/pure/subjectarea/asjc/1700/1704; name=Computer Graphics and Computer-Aided Design, /dk/atira/pure/subjectarea/asjc/2200/2200; name=General Engineering, /dk/atira/pure/subjectarea/asjc/1700/1712; name=Software, /dk/atira/pure/subjectarea/asjc/1700/1707; name=Computer Vision and Pattern Recognition, 3D facial attractiveness prediction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Green