Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Gastroenterology Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Gastroenterology Research and Practice
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identifying the Mechanism of Polygoni Cuspidati Rhizoma et Radix in Treating Acute Liver Failure Based on Network Pharmacology and Molecular Docking

Authors: Jing Hong; Jie Ding; Han-han Hong; Xiao-wan Xu; Bo Pan; Yi Ruan; Xiao-feng Zhai;

Identifying the Mechanism of Polygoni Cuspidati Rhizoma et Radix in Treating Acute Liver Failure Based on Network Pharmacology and Molecular Docking

Abstract

Background and Objective. Acute liver failure (ALF) is a rare clinical syndrome with a poor prognosis and leads to multiple organ failure. Polygoni Cuspidati Rhizoma et Radix (PCRR) is a commonly used Chinese medicine, which is recognized as a potential therapeutic herb against ALF. This study aimed to explore the pharmacological mechanisms of the therapeutic effect of PCRR in ALF via network pharmacology and molecular docking. Materials and Methods. The potential bioactive compounds of PCRR and their targets were collected from TCMSP, TCMID, and BATMAN-TCM databases with absorption, distribution, metabolism, and excretion protocols (oral bioavailability ≥30% and drug-likeness ≥0.18). The ALF-related target genes were identified using the GeneCards and OMIM databases. A protein-protein interaction (PPI) network among these targets was constructed using the Cytoscape software to obtain the core targets. The genes associated with ALF were analyzed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to identify the signaling pathways related to the therapeutic effect of PCRR in ALF. Results. In total, 10 bioactive compounds of PCRR and 200 targets related to them were obtained, and 2913 ALF-related target genes were identified. PPI network analysis pinpointed 15 core targets, namely, TP53, AKT1, JUN, HSP90AA1, MAPK1, RELA, TNF, ESR1, IL6, MYC, MAPK14, FOS, RB1, CDKN1A, and EGFR. GO enrichment and KEGG pathway analyses revealed that the therapeutic mechanisms of PCRR in ALF are related to cell metabolism, oxidative stress, inflammation, and hepatocyte apoptosis. Conclusion. This is the first study to explore the therapeutic mechanisms of PCRR in ALF via network pharmacology and molecular docking. This study provides a research platform with candidate ALF-related targets of PRCC for the development of therapeutics against ALF.

Related Organizations
Keywords

RC799-869, Diseases of the digestive system. Gastroenterology, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
gold