Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Experimental and Mol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Experimental and Molecular Medicine
Article . 1998 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Experimental and Molecular Medicine
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rapid increase of cytosolic content of acetyl-CoA carboxylase isoforms in H9c2 cells by short-term treatment with insulin and okadaic acid

Authors: C E, Park; S M, Kim; J M, Kim; M, Yoon; J Y, Kim; I, Kang; S S, Kim; +1 Authors

Rapid increase of cytosolic content of acetyl-CoA carboxylase isoforms in H9c2 cells by short-term treatment with insulin and okadaic acid

Abstract

Mammalian acetyl-CoA carboxylase (ACC) is present in two isoforms, alpha and beta, both of which catalyze formation of malonyl-CoA by fixing CO2 into acetyl-CoA. ACC-alpha is highly expressed in lipogenic tissues whereas ACC-beta is a predominant form in heart and skeletal muscle tissues. Even though the tissue-specific expression pattern of two ACC isoforms suggests that each form may have a distinct function, existence of two isoforms catalyzing the identical reaction in a same cell has been a puzzling question. As a first step to answer this question and to identify the possible role of ACC isoforms in myogenic differentiation, we have investigated in the present study whether the expression and the subcellular distribution of ACC isoforms in H9c2 cardiac myocyte change so that malonyl-CoA produced by each form may modulate fatty acid oxidation. We have observed that the expression levels of both ACC forms were correlated to the extent of myogenic differentiation and that they were present not only in cytoplasm but also in other subcellular compartment. Among the various tested compounds, short-term treatment of H9c2 myotubes with insulin or okadaic acid rapidly increased the cytosolic content of both ACC isoforms up to 2 folds without affecting the total cellular ACC content. Taken together, these observations suggest that both ACC isoforms may play a pivotal role in muscle differentiation and that they may translocate between cytoplasm and other subcellular compartment to achieve its specific goal under the various physiological conditions.

Related Organizations
Keywords

Cell Membrane Permeability, Morpholines, Myocardium, Immunoblotting, Cell Differentiation, Digitonin, Cell Line, Rats, Isoenzymes, Cytosol, Chromones, Okadaic Acid, Animals, Insulin, Phosphorylation, Acetyl-CoA Carboxylase

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold