Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PHASEN: A Phase-and-Harmonics-Aware Speech Enhancement Network

Authors: Dacheng Yin; Chong Luo 0001; Zhiwei Xiong; Wenjun Zeng 0001;

PHASEN: A Phase-and-Harmonics-Aware Speech Enhancement Network

Abstract

Time-frequency (T-F) domain masking is a mainstream approach for single-channel speech enhancement. Recently, focuses have been put to phase prediction in addition to amplitude prediction. In this paper, we propose a phase-and-harmonics-aware deep neural network (DNN), named PHASEN, for this task. Unlike previous methods which directly use a complex ideal ratio mask to supervise the DNN learning, we design a two-stream network, where amplitude stream and phase stream are dedicated to amplitude and phase prediction. We discover that the two streams should communicate with each other, and this is crucial to phase prediction. In addition, we propose frequency transformation blocks to catch long-range correlations along the frequency axis. Visualization shows that the learned transformation matrix implicitly captures the harmonic correlation, which has been proven to be helpful for T-F spectrogram reconstruction. With these two innovations, PHASEN acquires the ability to handle detailed phase patterns and to utilize harmonic patterns, getting 1.76dB SDR improvement on AVSpeech + AudioSet dataset. It also achieves significant gains over Google's network on this dataset. On Voice Bank + DEMAND dataset, PHASEN outperforms previous methods by a large margin on four metrics.

Related Organizations
Keywords

FOS: Computer and information sciences, Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    244
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
244
Top 0.1%
Top 1%
Top 0.1%
Green
gold