Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Physiology
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Differential dependence of store‐operated and excitation‐coupled Ca2+ entry in skeletal muscle on STIM1 and Orai1

Authors: Alla D, Lyfenko; Robert T, Dirksen;

Differential dependence of store‐operated and excitation‐coupled Ca2+ entry in skeletal muscle on STIM1 and Orai1

Abstract

In non‐excitable cells, agonist‐induced depletion of intracellular Ca2+ stores triggers Ca2+ influx via a process termed store‐operated Ca2+ entry (SOCE). In T‐lymphocytes, stromal interaction molecule 1 (STIM1) acts as the intra‐store Ca2+ sensor and Orai1 functions as the Ca2+‐permeable SOCE channel activated by STIM1 following store depletion. Two functionally distinct Ca2+ entry pathways exist in skeletal muscle; one activated by store depletion (SOCE) and a second by sustained/repetitive depolarization that does not require store depletion (excitation‐coupled Ca2+ entry, ECCE). However, the role of STIM1 and Orai1 in coordinating SOCE and ECCE activity in skeletal muscle and whether these two Ca2+ entry pathways represent distinct molecular entities or two different activation mechanisms of the same channel complex is unknown. Here we address these issues using siRNA‐mediated STIM1 knockdown, dominant‐negative Orai1, and permeation‐defective Orai1 to determine the role of STIM1 and Orai1 in store‐operated and excitation‐coupled Ca2+ entry in skeletal myotubes. SOCE and ECCE activity were quantified from both intracellular Ca2+ measurements and Mn2+ quench assays. We found that STIM1 siRNA reduced STIM1 protein by more than 90% and abolished SOCE activity, while expression of siRNA‐resistant hSTIM1 fully restored SOCE. SOCE was also abolished by dominant‐negative Orai1 (E106Q) and markedly reduced by expression of a permeation‐defective Orai1 (E190Q). In contrast, ECCE was unaffected by STIM1 knockdown, E106Q expression or E190Q expression. These results are the first to demonstrate that SOCE in skeletal muscle requires both STIM1 and Orai1 and that SOCE and ECCE represent two distinct molecular entities.

Related Organizations
Keywords

Membrane Glycoproteins, ORAI1 Protein, Myocardial Contraction, Electric Stimulation, Myoblasts, Mice, Animals, Calcium, Calcium Channels, Calcium Signaling, Stromal Interaction Molecule 1, Muscle, Skeletal, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    157
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
157
Top 10%
Top 10%
Top 1%
bronze