Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Neuroscience
Article . 2003
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fluoro-jade identification of cerebellar granule cell and purkinje cell death in the α1A calcium ion channel mutant mouse, leaner

Authors: T.C Frank; Louise C. Abbott; R Ramon; M.C Nunley; H.D Sons;

Fluoro-jade identification of cerebellar granule cell and purkinje cell death in the α1A calcium ion channel mutant mouse, leaner

Abstract

Cell death is a critical component of normal nervous system development; too little or too much results in abnormal development and function of the nervous system. The leaner mouse exhibits excessive, abnormal cerebellar granule cell and Purkinje cell death during postnatal development, which is a consequence of a mutated calcium ion channel subunit, alpha(1A). Previous studies have shown that leaner cerebellar Purkinje cells die in a specific pattern that appears to be influenced by functional and anatomical boundaries of the cerebellum. However, the mechanism of Purkinje cell death and the specific timing of the spatial pattern of cell death remain unclear. By double labeling both leaner and wild-type cerebella with Fluoro-Jade and terminal deoxynucleotide transferase-mediated, deoxyuridine triphosphate nick-end labeling or Fluoro-Jade and tyrosine hydroxylase immunohistochemistry we demonstrated that the relatively new stain, Fluoro-Jade, will label neurons that are dying secondary to a genetic mutation. Then, by staining leaner and wild-type cerebella between postnatal days 20 and 80 with Fluoro-Jade, we were able to show that Purkinje cell death begins at approximately postnatal day 25, peaks in the vermis about postnatal day 40 and in the hemispheres at postnatal day 50 and persists at a low level at postnatal day 80. In addition, we showed that there is a significant difference in the amount of cerebellar Purkinje cell death between rostral and caudal divisions of the leaner cerebellum, and that there is little to no Purkinje cell death in the wild type cerebellum at the ages we examined. This is the first report of the use of Fluoro-Jade to identify dying neurons in a genetic model for neuronal cell death. By using Fluoro-Jade, we have specifically defined the temporospatial pattern of postnatal Purkinje cell death in the leaner mouse. This information can be used to gain insight into the dynamic mechanisms controlling Purkinje cell death in the leaner cerebellum.

Related Organizations
Keywords

Male, Cell Death, Neurodegenerative Diseases, Calcium Channels, P-Type, Fluoresceins, Immunohistochemistry, Calcium Channels, Q-Type, Mice, Mice, Neurologic Mutants, Purkinje Cells, Calcium Channels, N-Type, Cerebellar Diseases, Cerebellum, Mutation, In Situ Nick-End Labeling, Animals, Female, Calcium Channels, Organic Chemicals, Fluorescent Dyes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!