Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrinologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrinology
Article
License: CC BY
Data sources: UnpayWall
Endocrinology
Article . 2004 . Peer-reviewed
Data sources: Crossref
Endocrinology
Article . 2004
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Novel Angiotensin-Converting Enzyme (ACE) Homolog, ACE2, Is Selectively Expressed by Adult Leydig Cells of the Testis

Authors: Gabrielle C, Douglas; Moira K, O'Bryan; Mark P, Hedger; David K L, Lee; Michael A, Yarski; A Ian, Smith; Rebecca A, Lew;

The Novel Angiotensin-Converting Enzyme (ACE) Homolog, ACE2, Is Selectively Expressed by Adult Leydig Cells of the Testis

Abstract

The metallopeptidase angiotensin-converting enzyme (ACE) plays a pivotal role in the cardiovascular system by generating the vasoconstrictor peptide angiotensin II. A homolog of ACE with different substrate specificity, ACE2, has recently been cloned that shows an expression pattern restricted to endothelial cells of the heart and kidney, epithelial cells of the distal tubule of the kidney, and the testis. Although the importance of ACE2 to cardiac function is already evident, its role in the testis remains unknown. In this study, we report the cloning and expression of human testicular ACE2 and confirm that it is identical to the somatic form of the enzyme. ACE2 catalytic activity was present in membrane preparations of whole testes and Leydig cells from adult rats; expression of the protein in Leydig cells was confirmed by Western immunoblot analysis. Using immunohistochemistry, ACE2 expression was confined to the Leydig cells in the rat testis and to Leydig and Sertoli cells in the human testis. Ablation of the Leydig cells in the rat by the specific toxin, ethane dimethane sulfonate, eliminated ACE2-positive cells from the interstitium. Expression of ACE2 in rat Leydig cells was up-regulated during the development of adult-type Leydig cells at puberty and after ethane dimethane sulfonate treatment. Expression of ACE2 activity in the testis was not significantly altered by manipulation of the pituitary-testicular hormonal axis with sc testosterone implants. These data suggest that ACE2 is a constitutive product of adult-type Leydig cells and may participate in the control of testicular function by as yet unknown mechanisms.

Keywords

Male, Staining and Labeling, Blotting, Western, Gene Expression, Leydig Cells, CHO Cells, Carboxypeptidases, Peptidyl-Dipeptidase A, Immunohistochemistry, Catalysis, Recombinant Proteins, Rats, Rats, Sprague-Dawley, Cricetulus, Cricetinae, Animals, Humans, Angiotensin-Converting Enzyme 2, Cloning, Molecular, Subcellular Fractions

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    234
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
234
Top 1%
Top 1%
Top 10%
hybrid