Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Cell Biolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Cell Biology
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

There's more to life than neurotransmission: the regulation of exocytosis by synaptotagmin VII

Authors: Norma W. Andrews; Sabyasachi Chakrabarti;

There's more to life than neurotransmission: the regulation of exocytosis by synaptotagmin VII

Abstract

Among the 16 known vertebrate synaptotagmins, only Syt I, IV and VII are also present in C. elegans and Drosophila, suggesting that these isoforms play especially important roles in vivo. Extensive evidence indicates that Syt I is a synaptic vesicle Ca(2+) sensor essential for rapid neurotransmitter release. It has been suggested that the ubiquitously expressed Syt VII also regulates synaptic vesicle exocytosis, despite its presence in several tissues in addition to the brain. Here, we discuss recent genetic and biochemical evidence that does not support this view. Syt VII null mutants do not have a neurological phenotype, and the protein is found on the membrane of lysosomes and some non-synaptic secretory granules, where it regulates Ca(2+)-triggered exocytosis and plasma membrane repair.

Related Organizations
Keywords

Secretory Vesicles, Cell Membrane, Membrane Fusion, Models, Biological, Synaptic Transmission, Exocytosis, Synaptotagmins, Synaptotagmin I, Animals, Humans, Lysosomes, Receptors, Calcium-Sensing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?