Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2007 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distinctcis-Regulatory Elements from theDlx1/Dlx2Locus Mark Different Progenitor Cell Populations in the Ganglionic Eminences and Different Subtypes of Adult Cortical Interneurons

Authors: Jason E. Long; Noël Ghanem; Man Yu; Marc Ekker; Gary Hatch; John L.R. Rubenstein;

Distinctcis-Regulatory Elements from theDlx1/Dlx2Locus Mark Different Progenitor Cell Populations in the Ganglionic Eminences and Different Subtypes of Adult Cortical Interneurons

Abstract

Distinct subtypes of cortical GABAergic interneurons provide inhibitory signals that are indispensable for neural network function. TheDlxhomeobox genes have a central role in regulating their development and function. We have characterized the activity of threecis-regulatory sequences involved in forebrain expression of vertebrateDlxgenes: upstream regulatory element 2 (URE2), I12b, and I56i. The three regulatory elements display regional and temporal differences in their activities within the lateral ganglionic eminence (LGE), medial ganglionic eminence (MGE), and caudal ganglionic eminence (CGE) and label distinct populations of tangentially migrating neurons at embryonic day 12.5 (E12.5) and E13.5. We provide evidence that the dorsomedial and ventral MGE are distinct sources of tangentially migrating neurons during midgestation. In the adult cortex, URE2 and I12b/I56i are differentially expressed in parvalbumin-, calretinin-, neuropeptide Y-, and neuronal nitric oxide synthase-positive interneurons; I12b and I56i were specifically active in somatostatin-, vasoactive intestinal peptide-, and calbindin-positive interneurons. These data suggest that interneuron subtypes use distinct combinations ofDlx1/Dlx2enhancers from the time they are specified through adulthood.

Keywords

Cerebral Cortex, Genetic Markers, Homeodomain Proteins, Male, Aging, Base Sequence, Gene Expression Regulation, Developmental, Cell Differentiation, Mice, Transgenic, Locus Control Region, Mice, Enhancer Elements, Genetic, Organ Culture Techniques, Cell Movement, Interneurons, Animals, Humans, Female, Regulatory Elements, Transcriptional, Cell Shape

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 10%
Top 10%
Top 10%
hybrid