
doi: 10.1210/en.2011-0102
pmid: 21586554
The TGF-β superfamily members are indicated to play key roles in ovarian follicular development, such as granulosa cell proliferation, estrogens, and progesterone production. However, little is known about the roles of TGF-β3 in follicular development. In this study, we found that TGF-β3 was predominantly expressed in granulosa cells of mouse ovarian follicles, and it significantly promoted 17β-estradiol (E2) release in a dose-dependent manner. The orphan nuclear receptor steroidogenic factor-1 (SF-1) was required in TGF-β3-induced Cyp19a1 (a key rate-limiting enzyme for estrogen biosynthesis) expression and E2 release. Additionally, TGF-β3 enhanced the binding of SF-1 to endogenous ovary-specific Cyp19a1 type II promoter, as evidenced by chromatin immunoprecipitation assays. The enhanced effect of SF-1 by TGF-β3 may be mediated through functional interactions between SF-1 and mothers against decapentaplegic homolog (Smad)3 (a mediator of TGF-β signaling pathway), because disruption of the interaction abolished the synergistic effects of SF-1, Smad3, and TGF-β3 on Cyp19a1 mRNA expression. RNA interference and chromatin immunoprecipitation studies also demonstrated that Smad3 was required for SF-1 binding to Cyp19a1 type II promoter and activation of Cyp19a1. Smad3 thus acts as a point of convergence that involves integration of SF-1 and TGF-β signaling in affecting E2 production. Taken together, our data provide mechanistic insights into the roles of SF-1 in TGF-β3-mediated E2 synthesis. Understanding of potential cross-points between extracellular signals affecting estrogen production will help to discover new therapeutic targets in estrogen-related diseases.
Transcriptional Activation, Mice, Inbred ICR, Granulosa Cells, Estradiol, Steroidogenic Factor 1, Mice, Aromatase, Transforming Growth Factor beta3, Animals, Female, Smad3 Protein
Transcriptional Activation, Mice, Inbred ICR, Granulosa Cells, Estradiol, Steroidogenic Factor 1, Mice, Aromatase, Transforming Growth Factor beta3, Animals, Female, Smad3 Protein
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 42 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
