Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2007 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Minocycline Down-regulates MHC II Expression in Microglia and Macrophages through Inhibition of IRF-1 and Protein Kinase C (PKC)α/βII

Authors: Shaun K. Yang; Ian D. Duncan; Samuel J. Jackson; Maria Nikodemova; Jyoti J. Watters;

Minocycline Down-regulates MHC II Expression in Microglia and Macrophages through Inhibition of IRF-1 and Protein Kinase C (PKC)α/βII

Abstract

Experimental allergic encephalomyelitis, an autoimmune disorder mediated by T cells, results in demyelination, inflammation, and axonal loss in the central nervous system (CNS). Microglia play a critical role in major histocompatibility complex class II (MHC II)-dependent antigen presentation and in reactivation of CNS-infiltrated encephalitogenic T cells. Minocycline, a tetracycline anti-biotic, has profound anti-inflammatory properties and is experimentally used for treatment of many CNS disorders; however, the mechanisms involved in minocycline effects remain unknown. We show that administration of minocycline for 2 weeks ameliorated clinical severity of experimental allergic encephalomyelitis, an effect that partially involves the down-regulation of MHC II proteins in the spinal cord. Therefore, we sought to elucidate the molecular mechanisms of minocycline inhibitory effects on MHC II expression in microglia. Although complex, the co-activator class II transactivator (CIITA) is a key regulator of MHC II expression. Here we show that minocycline inhibited interferongamma (IFNgamma)-induced CIITA and MHC II mRNA. Interestingly, however, it was without effect on STAT1 phosphorylation or IRF-1 expression, transcription factors that are activated by IFNgamma and necessary for CIITA expression. Further experiments revealed that MHC II expression is down-regulated in the presence of the PKC(alpha) inhibitor Gö6976. Minocycline inhibited IFNgamma-induced PKC(alpha/betaII) phosphorylation and the nuclear translocation of both PKC(alpha/betaII) and IRF-1 that subsequently inhibits CIITA expression. Our present data delineate a molecular pathway of minocycline action that includes inhibitory effects on PKC(alpha/betaII) and transcription factors that regulate the expression of critical inflammatory genes such as MHC II. Such a fundamental mechanism may underlie the pleiotropic effects of minocycline in CNS inflammatory disorders.

Related Organizations
Keywords

Antigen Presentation, Indoles, Macrophages, Anti-Inflammatory Agents, Carbazoles, Histocompatibility Antigens Class II, Down-Regulation, Nuclear Proteins, Minocycline, Demyelinating Autoimmune Diseases, CNS, Lymphocyte Activation, Anti-Bacterial Agents, Disease Models, Animal, Interferon-gamma, Animals, Female, Microglia, Enzyme Inhibitors, Phosphorylation, Interferon Regulatory Factor-1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    137
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
137
Top 10%
Top 10%
Top 10%
gold