Downloads provided by UsageCounts
In genital mucosa, different fates are described for HIV according to the subtype of dendritic cells (DCs) involved in its recognition. This notably depends on the C-type lectin receptor, langerin or DC-SIGN, involved in gp120 interaction. Langerin blocks HIV transmission by its internalization in specific organelles of Langerhans cells. On the contrary, DC-SIGN enhances HIV trans-infection of T lymphocytes. Thus, approaches aiming to inhibit DC-SIGN, without blocking langerin, represent attractive anti-HIV strategies. We previously demonstrated that dendrons bearing multiple copies of glycomimetic compounds were able to block DC-SIGN-dependent HIV infection in cervical explant models. Optimization of such ligand requires detailed characterization of its binding mode. In the present work, we determined the first high-resolution structure of a glycomimetic/DC-SIGN complex by X-ray crystallography. This glycomimetic, pseudo-1,2-mannobioside, shares shape and conformational properties with Manα1-2Man, its natural counterpart. However, it uses the binding epitope previously described for Lewis X, a ligand specific for DC-SIGN among the C-type lectin family. Thus, selectivity gain for DC-SIGN versus langerin is observed with pseudo-1,2-mannobioside as shown by surface plasmon resonance analysis. In parallel, ligand binding was also analyzed by TR-NOESY and STD NMR experiments, combined with the CORCEMA-ST protocol. These studies demonstrate that the complex, defined by X-ray crystallography, represents the unique binding mode of this ligand as opposed to the several binding orientations described for the natural ligand. This exclusive binding mode and its selective interaction properties position this glycomimetic as a good lead compound for rational improvement based on a structurally driven approach.
Models, Molecular, Cyclohexanecarboxylic Acids, [SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM], MESH: Molecular Structure, Molecular Sequence Data, transfer difference NMR; mediated HIV-infection; dendritic cells; Langerhans cells; GP120 binding; pathogen receptor; trans-infection; T-cells; spectroscopy; affinity, Receptors, Cell Surface, MESH: Drug Design, Crystallography, X-Ray, Ligands, [SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, MESH: Lectins, Biomimetics, MESH: Models, MESH: Ligands, MESH: Receptors, Lectins, C-Type, MESH: Carbohydrate Sequence, MESH: Molecular Sequence Data, Binding Sites, C-Type, Molecular Structure, Molecular Biology/Structural Biology [q-bio.BM], MESH: Crystallography, MESH: Mannosides, Molecular, 500, 540, Protein Structure, Tertiary, MESH: Protein Structure, MESH: Binding Sites, MESH: Biomimetics, Carbohydrate Sequence, Drug Design, Mannosides, Cell Surface, MESH: Cell Adhesion Molecules, X-Ray, MESH: Cyclohexanecarboxylic Acids, Cell Adhesion Molecules, Tertiary
Models, Molecular, Cyclohexanecarboxylic Acids, [SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM], MESH: Molecular Structure, Molecular Sequence Data, transfer difference NMR; mediated HIV-infection; dendritic cells; Langerhans cells; GP120 binding; pathogen receptor; trans-infection; T-cells; spectroscopy; affinity, Receptors, Cell Surface, MESH: Drug Design, Crystallography, X-Ray, Ligands, [SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, MESH: Lectins, Biomimetics, MESH: Models, MESH: Ligands, MESH: Receptors, Lectins, C-Type, MESH: Carbohydrate Sequence, MESH: Molecular Sequence Data, Binding Sites, C-Type, Molecular Structure, Molecular Biology/Structural Biology [q-bio.BM], MESH: Crystallography, MESH: Mannosides, Molecular, 500, 540, Protein Structure, Tertiary, MESH: Protein Structure, MESH: Binding Sites, MESH: Biomimetics, Carbohydrate Sequence, Drug Design, Mannosides, Cell Surface, MESH: Cell Adhesion Molecules, X-Ray, MESH: Cyclohexanecarboxylic Acids, Cell Adhesion Molecules, Tertiary
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 76 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 46 | |
| downloads | 38 |

Views provided by UsageCounts
Downloads provided by UsageCounts