
arXiv: 1301.6659
Recommender systems are emerging technologies that nowadays can be found in many applications such as Amazon, Netflix, and so on. These systems help users to find relevant information, recommendations, and their preferred items. Slightly improvement of the accuracy of these recommenders can highly affect the quality of recommendations. Matrix Factorization is a popular method in Recommendation Systems showing promising results in accuracy and complexity. In this paper we propose an extension of matrix factorization which adds general neighborhood information on the recommendation model. Users and items are clustered into different categories to see how these categories share preferences. We then employ these shared interests of categories in a fusion by Biased Matrix Factorization to achieve more accurate recommendations. This is a complement for the current neighborhood aware matrix factorization models which rely on using direct neighborhood information of users and items. The proposed model is tested on two well-known recommendation system datasets: Movielens100k and Netflix. Our experiment shows applying the general latent features of categories into factorized recommender models improves the accuracy of recommendations. The current neighborhood-aware models need a great number of neighbors to acheive good accuracies. To the best of our knowledge, the proposed model is better than or comparable with the current neighborhood-aware models when they consider fewer number of neighbors.
This paper has been withdrawn by the author due to crucial typo and the poor grammatical text
FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
