Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2011 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tulp1 Is Involved in Specific Photoreceptor Protein Transport Pathways

Authors: Gayle J.T. Pauer; Gregory H. Grossman; Stephanie A. Hagstrom; Rao F. Watson;

Tulp1 Is Involved in Specific Photoreceptor Protein Transport Pathways

Abstract

Tulp1 plays a critical role in protein transport from the photoreceptor inner segment (IS) to the outer segment (OS). To dissect which OS protein transport pathways are affected in the absence of Tulp1, we surveyed the localization of proteins destined for the OS in tulp1−/− mice. Immunohistochemistry was used to examine the localization of several classes of OS proteins as well as proteins involved in OS protein transport in young tulp1−/− mice prior to retinal degeneration. Comparisons were made to wild-type littermates. The absence of Tulp1 did not affect the transport of several phototransduction and OS structural proteins including phosphodiesterase, rhodopsin kinase, ROM-1, peripherin/RDS, and the cation channel. However, other phototransduction proteins such as rhodopsin, cone opsins, guanylate cyclase 1, and guanylate cyclase-activating proteins 1 and 2 were mislocalized to additional photoreceptor compartments. Two proteins that translocate in response to light stimulation were affected differently in tulp1−/− retinas; transducin translocated correctly whereas arrestin did not. In addition, chaperone proteins critical in the transport of rhodopsin-containing post-Golgi vesicles, Rab6, Rab8, and Rab11, were severely disrupted in tulp1−/− retinas. We conclude that Tulp1 is required for the correct transport of specific integral membrane proteins and their respective binding partners. Other classes of OS resident proteins do not appear to be affected. These differences support the hypothesis that Tulp1 plays a specific, critical role in photoreceptor OS protein transport pathways.

Related Organizations
Keywords

Rhodopsin, Membrane Glycoproteins, Chaperonins, Retinal Degeneration, Peripherins, Membrane Proteins, Nerve Tissue Proteins, Retinal Photoreceptor Cell Outer Segment, Mice, Mutant Strains, Mice, Protein Transport, Intermediate Filament Proteins, Animals, Eye Proteins, Photoreceptor Cells, Vertebrate

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?