Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Activation of Akt/GSK-3beta/beta-catenin signaling pathway is involved in survival of neurons after traumatic brain injury in rats

Authors: Yuanli Zhao; Shangfeng Zhao; Xiangrong Liu; Tony Wang; Ji-Di Fu; Jialiang Zhang;

Activation of Akt/GSK-3beta/beta-catenin signaling pathway is involved in survival of neurons after traumatic brain injury in rats

Abstract

Apoptotic cell death is an important factor influencing the prognosis after traumatic brain injury (TBI). Akt/GSK-3beta/beta-catenin signaling plays a critical role in the apoptosis of neurons in several models of neurodegeneration. The goal of this study was to determine if the mechanism of cell survival mediated by the Akt/GSK-3beta/beta-catenin pathway is involved in a rat model of TBI.TBI was performed by a controlled cortical impact device. Expression of Akt, phospho-Akt, GSK-3beta, phospho-GSK-3beta, beta-catenin, phospho-beta-catenin were examined by immunohistochemistry and Western blot analysis. Double immunofluorenscent staining was used to observe the neuronal expression of the aforementioned subtrates. Terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling (TUNEL) staining was performed to identify apoptosis.Western blot analysis showed that phospho-Akt significantly increased at 4 hours post-TBI, but decreased after 72 hours post-TBI. Phospho-GSK-3beta - phosphorylated by phospho-Akt - slightly increased at 4 hours post-TBI and peaked at 72 hours post-TBI. These changes in Phospho-GSK-3beta expression were accompanied by a marked increase in expression of phospho-beta-catenin at 4 hours post-TBI which was sustained until 7 days post-TBI. Double staining of phospho-Akt and NeuN revealed the colocalization of phospho-Akt positive cells and neuronal cells. In addition, double staining of phospho-Akt and TUNEL showed no colocalization of phospho-Akt cells and TUNEL-positive cells.Phosphorylation of Akt (Ser473) and GSK3beta (Ser9) was accelerated in the injured cortex, and involved in the neuronal survival after TBI. Moreover, neuroprotection of beta-catenin against ischemia was partly mediated by enhanced and persistent activation of the Akt/GSK3beta signaling pathway.

Related Organizations
Keywords

Male, Neurons, Glycogen Synthase Kinase 3 beta, Cell Survival, Blotting, Western, Fluorescent Antibody Technique, Apoptosis, Immunohistochemistry, Rats, Rats, Sprague-Dawley, Disease Models, Animal, Glycogen Synthase Kinase 3, Brain Injuries, Nerve Degeneration, In Situ Nick-End Labeling, Animals, Proto-Oncogene Proteins c-akt, beta Catenin, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?