Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Yeastarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Yeast
Article . 1995 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Yeast
Article . 1995
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two‐Dimensional protein map of Saccharomyces cerevisiae: Construction of a gene–protein index

Authors: H, Boucherie; G, Dujardin; M, Kermorgant; C, Monribot; P, Slonimski; M, Perrot;

Two‐Dimensional protein map of Saccharomyces cerevisiae: Construction of a gene–protein index

Abstract

AbstractThis publication marks the beginning of the construction of a gene–protein index that relates proteins which are resolved on the two‐dimensional protein map of Saccharomyces cerevisiae with their corresponding genes. We report the identification of 36 novel polypeptide spots on the yeast protein map. They correspond to the products of 26 genes. Together with the polypeptide spots previously identified, this raises to 41 the number of genes whose products have been identified on the protein map. The proteins identified here are concerned with four major areas of yeast cellular physiology: carbon metabolism, heat shock, amino acid biosynthesis and purine biosynthesis. Given the molecular weight and isoelectric point of the identified proteins, and the codon‐usage bias of the corresponding genes, it can be estimated that 25 to 35% of all the soluble yeast proteins are detectable under the labelling and running gel conditions used in this study.

Keywords

Genes, Fungal, Molecular Sequence Data, Saccharomyces cerevisiae, Reference Standards, Sensitivity and Specificity, Fungal Proteins, Molecular Weight, Models, Chemical, Electrophoresis, Gel, Two-Dimensional, Amino Acid Sequence, Isoelectric Point, Sequence Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!